Browse

Material

Publications

  • B1: A. E. Sand, S. L. Dudarev, K. Nordlund, "High-energy collision cascades in tungsten: Dislocation loops structure and clustering scaling laws", EPL (Europhysics Letters) 103, 46003 (2013). [link to article] [data sets]
  • B2: K. Nordlund, S. J. Zinkle, A. E. Sand, F. Granberg, R. S. Averback, R. Stoller, T. Suzudo, L. Malerba, F. Banhart, W. J. Weber, F. Willaime, S. L. Dudarev, D. Simeone, "Improving atomic displacement and replacement calculations with physically realistic damage models", Nature Communications 9, 1084 (2018). [link to article] [data sets]
  • B3: W. Setyawan, G. Nandipati, K. J. Roche, H. L. Heinisch, B. D. Wirth, R. J. Kurtz, "Displacement cascades and defects annealing in tungsten, Part I: Defect database from molecular dynamics simulations", Journal of Nuclear Materials 462, 329-337 (2015). [link to article] [data sets]
  • B4: J. Byggmästar, F. Granberg, A. E. Sand, A. Pirttikoski, R. Alexander, M.-C. Marinica, K. Nordlund, "Collision cascades overlapping with self-interstitial defect clusters in Fe and W", Journal of Physics: Condensed Matter 31, 245402 (2019). [link to article] [data sets]
  • B5: M. J. Aliaga, R. Schäublin, J. F. Löffler, M. J. Caturla, "Surface-induced vacancy loops and damage dispersion in irradiated Fe thin films", Acta Materialia 101, 22-30 (2015). [link to article] [data sets]
  • B6: A. De Backer, C. Domain, C. S. Becquart, L. Luneville, D. Simeone, A. E. Sand, K. Nordlund, "A model of defect cluster creation in fragmented cascades in metals based on morphological analysis", Journal of Physics: Condensed Matter 30, 405701 (2018). [link to article] [data sets]
  • B12: A. E. Sand, K. Nordlund, "On the lower energy limit of electronic stopping in simulated collision cascades in Ni, Pd and Pt", Journal of Nuclear Materials 456, 99-105 (2015). [link to article] [data sets]
  • B13: A. E. Sand, S. L. Dudarev, K. Nordlund, "High-energy collision cascades in tungsten: Dislocation loops structure and clustering scaling laws", Europhysics Letters 103, 46003 (2013). [link to article] [data sets]

Potentials

Data Link Filename Reference Comment
data eam.W.W.in B17: C. Björkas, K. Nordlund, S. Dudarev, "Modelling radiation effects using the ab-initio based tungsten and vanadium potentials", Nuclear Instruments and Methods in Physics Research Section B 267, 3204-3208 (2009). [link to article] Erratum https://doi.org/10.1016/j.nimb.2010.01.011
data eam.Fe.Fe.in
data W_Juslin2010_AT_mod.eam.fs B7: N. Juslin, B. D. Wirth, "Interatomic potentials for simulation of He bubble formation in W", Journal of Nuclear Materials 432, 61-66 (2013). [link to article]
data B8: G. J. Ackland, M. I. Mendelev, D. J. Srolovitz, S. Han, A. V. Barashev, "Development of an interatomic potential for phosphorus impurities in α-iron", Journal of Physics: Condensed Matter 16, S2629 (2004). [link to article]
data B9: L. Malerba, M. C. Marinica, N. Anento, C. Björkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra, D. Terentyev, F. Willaime, C. S. Becquart, "Comparison of empirical interatomic potentials for iron applied to radiation damage studies", Journal of Nuclear Materials 406, 19-38 (2010). [link to article] Potential by Marinica et al.
data B10: J. Byggmästar, F. Granberg, K.Nordlund, "Effects of the short-range repulsive potential on cascade damage in iron", Journal of Nuclear Materials 508, 530-539 (2018). [link to article]
data fe_mendelev10.pot B8: G. J. Ackland, M. I. Mendelev, D. J. Srolovitz, S. Han, A. V. Barashev, "Development of an interatomic potential for phosphorus impurities in α-iron", Journal of Physics: Condensed Matter 16, S2629 (2004). [link to article]
data B11: S. L. Dudarev, P. M. Derlet, "A 'magnetic' interatomic potential for molecular dynamics simulations", Journal of Physics: Condensed Matter 17, 239001 (2007). [link to article] Erratum https://doi.org/10.1088/0953-8984/19/23/239001
data B14: S. M. Foiles, "Application of the embedded-atom method to liquid transition metals", Physical Review B 32, 3409 (1985). [link to article] Pd, Pt; Modified EAM potential; see Nordlund et al., "Defect production in collision cascades in elemental semiconductors and fcc metals", <em>Physical Review B</em> <b>57</b>, 7556 (1998); doi:10.1103/PhysRevB.57.7556
data B15: C. L. Kelchner, D. M. Halstead, L. S. Perkins, N. M. Wallace, A. E. DePristo, "Construction and evaluation of embedding functions", Surface Science 310, 425-435 (1994). [link to article] "Cu-CEM" potential
data B16: M. J. Sabochick, N. Q. Lam, "Radiation-induced amorphization of ordered intermetallic compounds CuTi, CuTi2, and Cu4Ti3: A molecular-dynamics study", Physical Review B 43, 5243 (1991). [link to article] "Cu-SL" potential
data B18: G. J. Ackland, R. Thetford, "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A 56, 15-30 (1987). [link to article]
data B19: T. Ahlgren, K. Heinola, N. Juslin, A. Kuronen, "Bond-order potential for point and extended defect simulations in tungsten", Journal of Applied Physics 107, 033516 (2010). [link to article]
data B14: S. M. Foiles, "Application of the embedded-atom method to liquid transition metals", Physical Review B 32, 3409 (1985). [link to article] Au, Ag, Ni

People

  • María CATURLA, Department of Applied Physics, University of Alicante, Spain
  • Christophe DOMAIN, EDF R&D Lab Les Renardières, France
  • Fredric GRANBERG, Department of Physics, University of Helsinki, Finland
  • Andrea SAND, Department of Physics, University of Helsinki, Finland
  • Wahyu SETYAWAN, Pacific Northwest National Laboratory (PNNL), United States of America